14 research outputs found

    Single-Cell Rna Sequencing Deconvolutes the in Vivo Heterogeneity of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Get PDF
    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells that have a critical role in the maintenance of skeletal tissues such as bone, cartilage, and the fat in bone marrow. In addition to providing microenvironmental support for hematopoietic processes, BM-MSCs can differentiate into various mesodermal lineages including osteoblast/osteocyte, chondrocyte, and adipocyte that are crucial for bone metabolism. While BM-MSCs have high cell-to-cell heterogeneity in gene expression, the cell subtypes that contribute to this heterogeneity in vivo in humans have not been characterized. To investigate the transcriptional diversity of BM-MSCs, we applied single-cell RNA sequencing (scRNA-seq) on freshly isolated CD271+ BM-derived mononuclear cells (BM-MNCs) from two human subjects. We successfully identified LEPRhi CD45low BM-MSCs within the CD271+ BM-MNC population, and further codified the BM-MSCs into distinct subpopulations corresponding to the osteogenic, chondrogenic, and adipogenic differentiation trajectories, as well as terminal-stage quiescent cells. Biological functional annotations of the transcriptomes suggest that osteoblast precursors induce angiogenesis coupled with osteogenesis, and chondrocyte precursors have the potential to differentiate into myocytes. We also discovered transcripts for several clusters of differentiation (CD) markers that were either highly expressed (e.g., CD167b, CD91, CD130 and CD118) or absent (e.g., CD74, CD217, CD148 and CD68) in BM-MSCs, representing potential novel markers for human BM-MSC purification. This study is the first systematic in vivo dissection of human BM-MSCs cell subtypes at the single-cell resolution, revealing an insight into the extent of their cellular heterogeneity and roles in maintaining bone homeostasis

    A Survey on Gradient Inversion: Attacks, Defenses and Future Directions

    Full text link
    Recent studies have shown that the training samples can be recovered from gradients, which are called Gradient Inversion (GradInv) attacks. However, there remains a lack of extensive surveys covering recent advances and thorough analysis of this issue. In this paper, we present a comprehensive survey on GradInv, aiming to summarize the cutting-edge research and broaden the horizons for different domains. Firstly, we propose a taxonomy of GradInv attacks by characterizing existing attacks into two paradigms: iteration- and recursion-based attacks. In particular, we dig out some critical ingredients from the iteration-based attacks, including data initialization, model training and gradient matching. Second, we summarize emerging defense strategies against GradInv attacks. We find these approaches focus on three perspectives covering data obscuration, model improvement and gradient protection. Finally, we discuss some promising directions and open problems for further research.Comment: Accepted by IJCAI-ECAI 202

    The construction of personalized virtual landslide disaster environments based on knowledge graphs and deep neural networks

    No full text
    Virtual Landslide Disaster environments are important for multilevel simulation, analysis and decision-making about Landslide Disasters. However, in the existing related studies, complex disaster scene objects and relationships are not deeply analyzed, and the scene contents are fixed, which is not conducive to meeting multilevel visualization task requirements for diverse users. To resolve the above issues, a construction method for Personalized Virtual Landslide Disaster Environments Based on Knowledge Graphs and Deep Neural networks is proposed in this paper. The characteristics of relationships among users, scenes and data were first discussed in detail; then, a knowledge graph of virtual Landslide Disaster environments was established to clarify the complex relationships among disaster scene objects, and a Deep Neural network was introduced to mine the user history information and the relationships among object entities in the knowledge graph. Therefore, a personalized Landslide Disaster scene data recommendation mechanism was proposed. Finally, a prototype system was developed, and an experimental analysis was conducted. The experimental results show that the method can be used to recommend intelligently appropriate disaster information and scene data to diverse users. The recommendation accuracy stabilizes above 80% – a level able to effectively support The Construction of Personalized Virtual Landslide Disaster environments

    Wearable sensors and features for diagnosis of neurodegenerative diseases: A systematic review

    No full text
    Objective Neurodegenerative diseases affect millions of families around the world, while various wearable sensors and corresponding data analysis can be of great support for clinical diagnosis and health assessment. This systematic review aims to provide a comprehensive overview of the existing research that uses wearable sensors and features for the diagnosis of neurodegenerative diseases. Methods A systematic review was conducted of studies published between 2015 and 2022 in major scientific databases such as Web of Science, Google Scholar, PubMed, and Scopes. The obtained studies were analyzed and organized into the process of diagnosis: wearable sensors, feature extraction, and feature selection. Results The search led to 171 eligible studies included in this overview. Wearable sensors such as force sensors, inertial sensors, electromyography, electroencephalography, acoustic sensors, optical fiber sensors, and global positioning systems were employed to monitor and diagnose neurodegenerative diseases. Various features including physical features, statistical features, nonlinear features, and features from the network can be extracted from these wearable sensors, and the alteration of features toward neurodegenerative diseases was illustrated. Moreover, different kinds of feature selection methods such as filter, wrapper, and embedded methods help to find the distinctive indicator of the diseases and benefit to a better diagnosis performance. Conclusions This systematic review enables a comprehensive understanding of wearable sensors and features for the diagnosis of neurodegenerative diseases

    Radiofrequency ablation combined with toripalimab for recurrent hepatocellular carcinoma: A prospective controlled trial

    No full text
    Abstract Objective The effectiveness and security of radiofrequency ablation (RFA) in combination with toripalimab (anti‐PD‐1) for the treatment of recurrent hepatocellular carcinoma (HCC) was studied in this article. Methods Total of 40 patients were enrolled in the study between September 2019 and November 2021. Data follow‐up ends in April 2022. The study’s main focus is on recurrence free survival (RFS), while the secondary objectives was safety. Chi‐square tests, Kaplan‐Meier, and Cox proportional hazards models were utilized to analyze the data. Results The median follow‐up period was 21.40 months, and the median RFS was 15.40 months in the group that received combination therapy, which was statistically significantly different (HR: 0.44, p = 0.04) compared with the RFA group (8.2 months). RFS rates (RFSr) at 6, 12 and 18 months in the combination therapy groups and RFA groups were 80% vs 65%, 62.7% vs 35% and 48.7% vs 18.8%, respectively. Between the two groups, significant difference of RFSr was found at 18 months (p = 0.04). No statistical differences were observed between the two groups in terms of safeness (p > 0.05). The subgroup analysis indicated that the combination of RFA and anti‐PD‐1 led to better RFS than RFA alone. Moreover, patients benefited more from combination therapy in the groups younger than 60 years (HR: 0.26, p = 0.018), male (HR: 0.32, p = 0.028) and Child‐Pugh grade A (HR: 0.38, p = 0.032). Conclusions Combining RFA with anti‐PD‐1 showed improved RFS and was deemed safe for patients with recurrent HCC who had previously undergone RFA treatment alone

    Adaptive Construction of the Virtual Debris Flow Disaster Environments Driven by Multilevel Visualization Task

    No full text
    The construction of a virtual debris flow disaster environment is of great significance in debris flow disaster prevention, risk assessment, accurate simulation, and disaster emergency response. However, existing research on virtual disaster environments mainly focus on the specific visualization task requirements of single-type users, and the multilevel visualization task requirements of multitype users are generally not met. In this paper, an adaptive construction method for virtual debris flow disaster environments driven by multilevel visualization task is proposed based on the characteristics of users with different professional knowledge backgrounds and requirements in disaster emergency response scenarios. The on-demand construction of virtual debris flow disaster environments and the corresponding diverse organization and dynamic scheduling technologies are discussed in detail. Finally, the Qipan Gully debris flow disaster is selected for experimental analysis, and a prototype system is developed. The experimental results show that the proposed method can adaptively construct virtual debris flow disaster environments according to the multilevel visualization task requirements of multitype users in debris flow disaster emergency response scenarios. This approach can provide efficient rendering of disaster scenes and appropriate disaster information to multitype users who are involved in debris flow disaster emergency response scenarios
    corecore